已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
人气:365 ℃ 时间:2019-10-14 06:06:01
解答
∵a,b是Rt△ABC的两条直角边,c是斜边,
∴a2+b2=c2,
即a2=c2-b2=(c+b)(c-b),
∵a为质数,
∴c+b=a2,c-b=1,
∴a2=2b+1,
∴2(a+b+1)=a2+2a+1=(a+1)2,
∴2(a+b+1)是完全平方数.
推荐
- 已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
- 一个直角三角形两直角边为A.B(B是质数),斜边为C(m.t.n均为正整数)求证2(b+m+1)是完全平方数
- 已知a,b,c均为正整数,且满足a的平方,b的平方,c的平方,有a为质数,求证2(a+b+1)是完全平方式
- 已知a^2+b^2=c^2,a为质数,b,c为整数,求证2(a+b+1)为完全平方数
- a^2+b^2=c^2 ,a为质数,a,b,c都为正整数,求证:2(a+2b-c+2)是完全平方数
- attitude is very important because...
- 连词成句 1 can't 2 a lot of 3 I 4 new 5 words 6 memorize
- 陶文化主要有什么特点
猜你喜欢