∴∠EBP=∠C,四边形AEPF是平行四边形,
∴PF=AE,
已知等腰△ABC,
∴∠EPB=∠C=∠B,
∴PE=BE,
∴PE+PF=BE+AE=AB,
∴PE+PF=a.
(2)(1)中的结论还成立.

过点P作PG∥CD交BD于点G,
已知等腰梯形ABCD,AD∥BC,AB=CD,
∴∠ABC=∠DCB,
BC=BC,
∴△ABC≌△DCB,
∴∠GBP=∠ACB,
∵PE∥AC,
∴∠EPB=∠ACB,
∴∠GBP=∠EPB,
又∵PG∥CD,
∴∠GPB=∠DCB=∠ABC,
即∠GPB=∠EBP,
BP=PB,
∴△BPE≌△PBG,
∴PE=BG,
PG∥CD,PF∥BD,
∴四边形PGDF为平行四边形,
∴PF=DG,
∴PE+PF=BG+DG=AD=a,
所以(1)中的结论还成立.

