设函数f(x)在[0,1]连续且单调增加,证明F(X)=(1/X)∫[0,x]f(t)dt在(0,1)内也单调增加
人气:337 ℃ 时间:2019-11-07 02:36:04
解答
F(x)=(1/x)*∫[0,x]f(t)dtF'(x)=(1/x)'*∫[0,x]f(t)dt+(1/x)*{∫[0,x]f(t)dt}'=(-1/x²)*∫[0,x]f(t)dt+(1/x)*f(x)=(-1/x²)*{∫[0,x]f(t)dt-xf(x)}由积分中值定理,在[0,x]上,至少存在一点ξ∈[0,x],使得 (x...谢谢您的指点,对我非常有帮助!
推荐
- 已知连续函数f(x)在(a,b]上单调递增,F(x)=∫(上x,下a)f(t)dt/(x-a),证明F(x)在(a,b]上也单调递增.
- 设f(x)为连续函数,证明:∫下0上x f(t)(x-t)dt=∫下0上x(∫下0上t f(u)du)dt
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
- ∫(0,x)f(t)dt-∫(-x,0)f(t)dt是周期函数的证明
- i have no idea what to do tomorrow
- 古罗马古希腊和现在的罗马希腊有什么区别(在艺术上讲的)?
- 因式分解:-x3+4x2-4xy2
猜你喜欢