设P是抛物线y2=4x上的一个动点.
(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;
(2)若B(3,2),求|PB|+|PF|的最小值.
人气:156 ℃ 时间:2020-05-14 00:37:56
解答
(1)可得抛物线y2=4x的焦点F(1,0),准线方程为x=-1,∴点P到点A(-1,1)的距离与点P到直线x=-1的距离之和等于P到点A(-1,1)的距离与点P到焦点F的距离之和,当P、A、F三点共线时,距离之和最小,且为|AF|,由...
推荐
- 一道关于抛物线的题目.
- 设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O.
- 在平面直角坐标系XOY中,抛物线y=x^2上异于原点O的两动点A,B满足AO垂直于BO.
- 直线l经过抛物线y2=4x的焦点F,与抛物线交于A,B两点,则弦AB中点的轨迹方程为_.
- 设抛物线y^2=2x的焦点为F,过点M(根3,0)的直线与抛物线相较于A,B两点,与抛物线的准线相较于C,BF的绝对值=2,则三角形BCF与三角形ACF的面积之比:S三角形BCF比S三角形ACF=( )
- 已知函数f(x)=根号3sinxcosx-cos^x-1/2,x∈r,求函数的最小值.
- 翻译make English study plan for the term .Discuss it with your classmates
- 求关于对世界杯的看法的英语作文(300词)
猜你喜欢