设向量an=(cosnπ/6,sinnπ/6),n属于正整数,向量b(1,√3) 则y=|a1+b|^2+|a2+b|^2+```````+|a10+b|^2=?
人气:338 ℃ 时间:2020-06-24 01:49:27
解答
an=(cosnπ/6,sinnπ/6),
所以an^2= cos²nπ/6,sin²nπ/6=1.
b=(1,√3),所以b*2=4.
y=|a1+b|^2+|a2+b|^2+```````+|a10+b|^2
= a1^2+ a2^2+……+ a10^2+2a1b+2a2b+……+2a10b+10 b^2
= a1^2+ a2^2+……+ a10^2+2(a1+a2+……+a10)b+10 b^2
=10+2(a1+a2+……+a10)b+40
=50+2(a1+a2+……+a10)b
因为an=(cosnπ/6,sinnπ/6),
所以a1=(√3/2,1/2),
a2=(1/2,√3/2),a3=(0,1),a4=(-1/2,√3/2),
a5=(-√3/2,1/2),a6=(-1,0),a7=(-√3/2,-1/2),
a8=(-1/2,-√3/2),a9=(0,-1),a10=(1/2,-√3/2),
所以a1+a2+……+a10=(-1-√3/2,1/2),
(a1+a2+……+a10)b=(-1-√3/2,1/2)*(1,√3)
=-1-√3/2+√3/2=-1,
∴y=50-2=48.
推荐
- 百度提问设向量An=(cosnπ/6,sinnπ/6),n属于正整数,向量b=(1,根号3)则求y=|A1+b|+.|A10+b
- 已知向量an=(cosnπ/7,sinnπ/7),|b|=1,则函数y=|a1+b|^2+|a2+b|^2+|a3+b|^2+...+|a141+b|^2=?
- 已知向量an=(cosnπ/7,sinnπ/7) 求y=|a1+b|+|a2+b|+|+|a3+b|+
- 已知数列an,a1=1,a2=3且a(n+2)=(1+2|cosnπ/2|)an+|sinnπ/2)
- a1=1,a2=2,a(n+2)=(1+(cosnπ\2)^2)an+(sinnπ\2)^2
- 师异道,人异论,百家殊方,旨意不同...凡不在六艺之科,孔子之术者,皆绝其道,勿使并进...
- 怎样判断一条题目是证明还是求值?
- 已知,如图,在梯形ABCD中,AD//BC,EF是梯形的中位线(两腰中点的连线).求证:EF//AD,EF//BC,EF=0.5(AD+BC).
猜你喜欢