设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)
人气:450 ℃ 时间:2020-06-07 20:42:29
解答
证明:因为 A^k = 0
所以 (E-A)(E+A+A^2+...+A^(k-1))
= E+A+A^2+...+A^(k-1)
-A-A^2-...-A^(k-1)-A^k
= E - A^k
= E
所以 E-A 可逆,且 (E-A)^-1 = E+A+A^2+...+A^(k-1)
推荐
- 设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A^k-1
- 设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵
- 矩阵A^2=A,证明:(A+E)^k=E+(2^k-1)A (k∈N).
- 设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…+
- 今有矩阵A=[2,1,0;0,2,1;0,0,2],即主对角为2的jordan快,证明对于任意正整数k都可找到一个矩阵B使得B^k=A
- 【化学】为什么HCl不能用排水集气法收集?为什么H2可以?
- 莫斯科国的列宁图书馆有多少本书
- 如何保护视力英语作文
猜你喜欢
- 2) Does internet have more advantages or disadvantages?And what are they?
- 对杜小康这个人物来说,"孤独"的含义是什么
- 已知函数f(x)=sinx与g(x)=cosx,x∈﹙0,2π﹚,求不等式f(x)≤g(x)的解集
- No to cloud the water any more 如何翻译
- 帮个忙咯 已知A=2a²-a,B=-5a+1,B=-5a+1 (1)化简:4A-2B-1 (2)当a=-1时,求4A-2B-1的值
- 有一件工艺品质量2千克,体积180cm³,是用金 铜两种金属制成的,求该工艺品中含金 铜各多少千克?
- f(x)在[a,b]内2阶可导,f(x)二阶导数的绝对值小于等于M;有在(a,b)内部去等取得最小值
- 水结冰后体积为什么会变大