高一向量题,
已知平面内三个向量a,b,c,他们每两个之间夹角为120°,a•b=-2,a+b+c=0
求c的模的最小值
而我求出来c是一个确定的值,等于2,到底是题有误,还是我错了?
人气:433 ℃ 时间:2020-04-30 19:40:00
解答
a*b=|a||b|cos120=-1/2|a||b|=-2
|a||b|=4
a+b=-c
|c|=|a+b|
|c|^2=|a+b|^2=|a|^2+|b|^2+2ab=|a|^2+|b|^2-4≥2|a||b|-4=4
|c|=2
注意这里用到了均值不等式,所以是最小值
推荐
- 高一向量题
- 已知向量OA(3,1),向量OB(—1,2),向量OC垂直于OB向量,向量BC与向量OA平行,试求满足向量OD加向量OA等于向量OC的向量OD的坐标(O是坐标原点)
- 设向量AB=(3,1),OB=(-1,2),向量OC垂直于向量OB,向量BC平行于OA,试求OD+OA=OC时,向量OD的坐标.
- 一道高一向量题
- 设点O是△ABC内一点,满足 向量OA+2向量OB+2向量OC=0 则△ABC 的面积 与三角形的 OBC 的面积之比为 —— 5比1 对么
- 97吨煤耗量会产生二氧化硫多少公斤?烟尘多少公斤?氮氧化物多少公斤?怎么算?
- 在划线处填上恰当的四字词语或成语.
- 求下列个数的算术平方根(1)64(2)0.04(3)9/25
猜你喜欢