正方形ABCD,E、F分别为AD、AB中点,连接DF、CE交于点P,连接BP,求证BP=BC
人气:156 ℃ 时间:2019-11-05 21:25:43
解答
证明:
取CD中点G,连结BG,交CE于点N,连结GP
在△CDE和△DAF中
DE=AF,CD=DA,∠CDE=∠DAF=90°
所以△CDE≌△DAF
所以∠ECD=∠FDA
而∠FDA+∠FDC=90°
所以∠ECD+∠FDC=90°
所以∠DPC=90°
而GD=GC
所以GP=GC
又四边形BFDG是平行四边形
所以GB‖DF(即DP‖GN)
而GD=GC
所以GN是△DPC的中位线
所以NC=NP
在△GNP和△GNC中
GP=GC,NP=NC,GN=GN
所以△GNP≌△GNC
所以∠PNG=∠CNG=90°
又NP=NC
所以BG是CP的中垂线
所以BP=BC
推荐
- 在正方形ABCD中,E、F分别为AB、BC中点,CE、DF相交于M,求证:AM=AD
- 在正方形abcd中,e,f分别是ab,bc边的中点.ce,df交与于点p,求证ap=ad
- 在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF相交于点O.求证:AD=AO
- 已知:如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N. 求证:四边形MFNE是平行四边形.
- 已知:如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N. 求证:四边形MFNE是平行四边形.
- 英语翻译
- 已知菱形的两条对角线长分别为4cm,6cm,则菱形的周长为_.
- 求一篇400字左右的物理论文(初三级别)
猜你喜欢