> 数学 >
已知 log2(3)=A log3(7)=B 试求log14(56)
人气:406 ℃ 时间:2020-06-28 03:27:33
解答
运用换底log14(56)=log3(56)/log3(14)=log3(7*8)/log3(2*7)=〔log3(7)+log3(8)〕/〔log3(7)+log3(2)〕log3(2)=1/log2(3)=1/alog3(8)=3log3(2)=3/alog14(56)=(b+3/a)/(b+1/a)=(ab+3)/(ab+1)=1+2/(ab+1)...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版