lg4+lg5.lg20+(lg5)^2
=lg2²+lg5×(lg2+lg10)+lg²5
=2lg2+lg5×lg2+lg5×lg10+lg²5
=2lg2+lg5×(lg2+lg5)+lg5×1
=2lg2+lg5×1+lg5
=2(lg2+lg5)
=2
lg25+lg2.lg50+(lg^2)2
=lg5²+lg2×(lg5+lg10)+lg²2
=2lg5+lg2×lg5+lg2×lg10+lg²2
=2lg5+lg2×(lg5+lg2)+lg2×1
=2lg5+lg2×1+lg2
=2(lg5+lg2)
=2