设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0
人气:186 ℃ 时间:2019-10-19 11:39:20
解答
椭圆x²+y²/b²=1
a=1,AF1+AF2=2,BF1+BF2=2
AB=AF1+BF2
根据题意
2AB=AF2+BF2
3AB=AF1+AF2+BF1+BF2
3AB=4
AB=4/3
设过点F1(-c,0)的直线为y=x+c
代入椭圆b²x²+y²=b²
b²x²+x²+2cx+c²=b²
(b²+1)x²+2cx+c²-b²=0
x1+x2=-2c/(b²+1)
x1*x2=(c²-b²)/(b²+1)
AB=4/3
16/9=(1+1)[(x1+x2)²-4x1x2]
8/9=4c²/(b²+1)²-4(c²-b²)/(b²+1)
c²=a²-b²=1-b²
所以
4(1-b²)/(b²+1)²-4(1-2b²)/(b²+1)=8/9
b^4=1/9(b²+1)²
b²=1/3(b²+1)
3b²=b²+1
b²=1/2
b=√2/2
所以b=√2/2
推荐
- 设F1,F2分别是椭圆E:X^2/a^2+Y^2/b^2=1的左右焦点,过F1斜率为1与E相交于A,B,且|AF2|,|AB|,BF2|成等差
- 设F1,F2分别是椭圆x^2+y^2/b^2=1(0
- 设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0
- 设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等差数
- F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,BF2|成等
- 初二数学问题:X=√3除以3时,代数式x²-3X除以X-2除以(X+3除以2-X)的值为多少? 化为最简就行了
- 取一个玻璃杯,盛半杯水,并用彩笔画出水的高度.然后把5枚1元硬币放入水中,看水位升到哪里记下来;如果把50枚1角硬币放入水中,结果相同吗?为什么?
- 4x^2-14xy+6y^2-7x+y-2
猜你喜欢