limx趋向于无穷n2(arctan(a/n)-arctan[a/(n+1)]求极限
人气:321 ℃ 时间:2020-05-15 04:25:46
解答
lim+00> n²(arctan(a/n)-arctan[a/(n+1)])
=lim+00> n²(a/n-a/(n+1)) (因为arctanx~x )
=lim+00> n²(a/(n²+1))
=lim+00> a/(1+1/n²)
=a/1=a
推荐
- limx趋向于无穷n2(arctan(a/n)-arctan[a/(n+1)]求极限!
- arctan(x)的极限?
- limn→∞(1/n2+n+1+2/n2+n+2+…+n/n2+n+n)=_.
- limx趋向0(∫arctan t dt)/x^2 上限x下限0 求极限
- limx趋向无穷 xcos1/x的极限 limx趋向0xtanx的极限
- 已知x1,x2,x3,x4,x5是非负实数,且x1+x2+x3+x4+x5=100,M是x1+x2,x2+x3,x3+x4,x4+x5中的最大值,求M的最小值
- They put their ____(watch)my on.
- 一个太阳一个月亮 猜一个成语
猜你喜欢