已知椭圆的焦点F1(-3,0).F2(3,0),且与直线X-Y+9=0有公共点,则其中长轴最短的椭圆方程为?
思路我清楚,就是计算太麻烦了,
人气:155 ℃ 时间:2019-11-07 22:14:22
解答
点F1(-3,0)关于直线X-Y+9=0的对称点F1′坐标为(-9,6)
长轴最短时,2a=|F2F1′|=6√5
a=3√5,c=3,
b=6
所求椭圆方程为
x^2/45+y^2/36=1
推荐
- 已知椭圆的焦点F1(-3,0)、F2(3,0),且与直线x-y+9=0有公共点,求其中长轴最短的椭圆方程.
- 已知点F1(-1,0),F2(1,0).若与直线L:x-y+3=0有公共点的椭圆C以F1,F2为焦点,且具有最短长轴,求椭圆C方程
- 已知椭圆x^2/9+y^2/5=1的焦点为F1,F2在直线l上找一点M,求以F1,F2为焦点,通过点M且长轴最短的椭圆方程
- 已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交于A、B两点,且|AB|=3,求C方程
- 以椭圆Ex^2/8+y^2/4=1的焦点F1、F2为焦点,经过直线x+y=9上一点P作椭圆C,当C的长轴最短时,求C的方程
- 首字母填空
- 小学英文诗歌
- 英语翻译:明天的会议能不能换一下时间?
猜你喜欢