△ABC的三个内角分别是A,B,C,所队的边分别为a,b,c,且asinAsinB+bcos²A=√2a
求b/a
若c²=b²+√3a²求B
人气:219 ℃ 时间:2019-08-20 21:10:33
解答
(1)根据正弦定理
a=2RsinA,b=2RsinB (其中R为外接圆的直径)
代入得
2RsinAsinAsinB+2RsinBcos²A=√2×2RsinA
(sin²A+cos²A)sinB=√2sinA
所以sinB/sinA=√2
所以b/a=√2
(Ⅱ)由余弦定理得cosB=(c²+a²-b²)/(2ca)
又c²=b²+√3a²,
所以cosB= (1+√3 )a /2c
由(Ⅰ)知b²=2a²,故c²=(2+ √3)a²,
可得cos²B=1/2 ,又cosB>0,故cosB=√2/2
所以B=45°
推荐
- 若a,b,c是△ABC三个内角A,B,C所对边,且asinAsinB+bcos²A=√3a
- 三角形ABC的三个内角ABC的对边分别为abc,asinAsinB+bcos²A=√2a,b/a=√2,
- 三角形的三个内角ABC的对边分别为abc,asinAsinB+bcos²A=√2a,b/a=√2,
- 在△ABC中,asinAsinB+bcos2A=2a,则ba等于( ) A.23 B.22 C.3 D.2
- △ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos²A=2a,(1)求b/a,(2)求A的取值范围.
- 乳酸左氧氟沙星氯化钠对人体的副作用
- 鸟是树的花朵读后感
- 落在枝头的小鸟将树枝压弯,说明力的作用效果是_.
猜你喜欢