已知平面直角坐标平面上点Q(2,0)和圆C1:x^2+y^2=1,动点M到圆的切线长与|MQ|的比值为1 (1)求出点M的轨迹C2的方程 (2)判断曲线C1与C2的位置关系,并说明判断理由
人气:216 ℃ 时间:2020-02-03 05:15:19
解答
设M的坐标是(x,y),
|MC|^2=x^2+y^2
r^2=1
设动点M到圆的切线长为d
d^2=|MC|^2-r^2=x^2+y^2-1
|MQ|^2=(x-2)^2+y^2
当d/MQ=1时,d=MQ,即d^2=|MQ|^2
则:x^2+y^2-1=(x-2)^2+y^2
化简得:4x=5
x=5/4
当d/MQ=2时,d=2MQ,即d^2=4|MQ|^2
则:x^2+y^2-1=4[(x-2)^2+y^2]
化简得:3y^2+3x^2-16x+17=0
(x-8/3)^2+y^2=13/9
终上所述:
当d/MQ=1时,点M的轨迹方程是:x=5/4
当d/MQ=2时,点M的轨迹方程是:(x-8/3)^2+y^2=13/9
推荐
- 已知直角坐标平面上点Q(2,0)和圆C:x^2+y^2=1 ,动点M到圆O的切线长与MQ的绝对值的比等于常数1
- 已知直角坐标平面内点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与MQ的绝对值的比等于常数λ(λ>0)
- 已知直角坐标系平面上的动点Q(2,0)和圆C:X∧2+y∧2=1,动点M到圆C的切线长与│MQ│的比等于常数λ求
- 已知直角坐标平面上Q(2,0)和圆C:X平方+Y平方=1,动点M到圆C的切线长与|MQ|的比等于A(A>0).求动点M的...
- 直角坐标平面上点Q(k,0)和圆C:x^2+y^2=1,动点M到圆的切线长与|MQ|的比值为2,(1)当k=2时,M的轨迹方程
- 5²-3²=8*2 11²-5²=8*12,求规律,求代数式
- 简述昆虫纲的主要特征
- 数a与它的倒数积是( )8分之7减去8分之1与3分之2的积差事( )
猜你喜欢