> 数学 >
直角坐标平面上点Q(k,0)和圆C:x^2+y^2=1,动点M到圆的切线长与|MQ|的比值为2,(1)当k=2时,M的轨迹方程
(2)当k属于R时,M的轨迹方程,并说明轨迹是什么图形
人气:138 ℃ 时间:2020-02-02 18:06:39
解答
设点M的坐标为(x,y)
则点M到圆的切线长|MA|=√[MO²-AO²]=√[x²+y²-1]
|MQ|=√[(x-k)²+y²]
(1)当k=2时,|MA|/|MQ|=(√[x²+y²-1] )/(√[(x-2)²+y²] )=2
化简得:3x²+3y²-16x+17=0
即为点M的轨迹方程
(2)当k∈R时,|MA|/|MQ|=(√[x²+y²-1] )/(√[(x-k)²+y²] )=2
∴x²+y²-1=4[(x-k)²+y²]
化简得:点M的轨迹方程为:3x²+3y²-8kx+4k²+1=0
整理得:x²+y²-(8/3)kx+[(4k²+1)/3]=0
即(x-4/3k)²+y²=(4k²-3)/9
∴k>√3/2或k<-√3/2时,点M的轨迹是以(4/3k,0)为圆心,以[√(4k²-3)]/3为半径的圆;
k=√3/2或k=-√3/2时,点M的轨迹是点(4/3k,0);
-√3/2<k<√3/2时,该方程不代表任何图形.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版