直角坐标平面上点Q(k,0)和圆C:x^2+y^2=1,动点M到圆的切线长与|MQ|的比值为2,(1)当k=2时,M的轨迹方程
(2)当k属于R时,M的轨迹方程,并说明轨迹是什么图形
人气:138 ℃ 时间:2020-02-02 18:06:39
解答
设点M的坐标为(x,y)
则点M到圆的切线长|MA|=√[MO²-AO²]=√[x²+y²-1]
|MQ|=√[(x-k)²+y²]
(1)当k=2时,|MA|/|MQ|=(√[x²+y²-1] )/(√[(x-2)²+y²] )=2
化简得:3x²+3y²-16x+17=0
即为点M的轨迹方程
(2)当k∈R时,|MA|/|MQ|=(√[x²+y²-1] )/(√[(x-k)²+y²] )=2
∴x²+y²-1=4[(x-k)²+y²]
化简得:点M的轨迹方程为:3x²+3y²-8kx+4k²+1=0
整理得:x²+y²-(8/3)kx+[(4k²+1)/3]=0
即(x-4/3k)²+y²=(4k²-3)/9
∴k>√3/2或k<-√3/2时,点M的轨迹是以(4/3k,0)为圆心,以[√(4k²-3)]/3为半径的圆;
k=√3/2或k=-√3/2时,点M的轨迹是点(4/3k,0);
-√3/2<k<√3/2时,该方程不代表任何图形.
推荐
- 已知平面直角坐标平面上点Q(2,0)和圆C1:x^2+y^2=1,动点M到圆的切线长与|MQ|的比值为1 (1)求出点M的轨迹C2的方程 (2)判断曲线C1与C2的位置关系,并说明判断理由
- 已知直角坐标平面上点Q(2,0)和圆C:x^2+y^2=1 ,动点M到圆O的切线长与MQ的绝对值的比等于常数1
- 已知直角坐标平面上点Q(2,0)和圆C:X2+Y2=1.动点M到圆的切线长与MQ的比值分别为1或2时,点M的轨迹方程
- 直角坐标系上的点Q(2.0)和圆x^2+y^2=1,动点m到圆的切线长MN=MQ求M的轨迹方程
- 已知直角坐标平面内点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与MQ的绝对值的比等于常数λ(λ>0)求
- 英语翻译:我去过一家店,那里菜的分量和菜单上的一样
- 一个圆形跑到长800米,甲每分钟跑160米,乙的速度是甲的二倍,乙在甲的前方100米 多长时间乙追上甲?
- 某物业公司准备向银行贷款10万元,借款1年后还本付息.甲银行贷款年利率6%,按年计息,乙银行贷款年利率5%,按季计息.试分析该公司应选择哪家银行贷款才合算?
猜你喜欢