则a2=4,∴a=2,
∴g(x)=2x,f(x)=
m−2x |
1+2x |
又∵f(x)为奇函数,
∴f(-x)=-f(x),∴
m−2−x |
1+2−x |
m−2x |
1+2x |
整理得m(2x+1)=2x+1,∴m=1,
∴f(x)=
1−2x |
1+2x |
(Ⅱ)∵f′(x)=
−2.2xln2 |
(1+2x)2 |
也可用f(x)=
2 |
1+2x |
要使对任意的t∈[0,5],f(t2+2t+k)+f(-2t2+2t-5)>0解集非空,
即对任意的t∈[0,5],f(t2+2t+k)>-f(-2t2+2t-5)解集非空.
∵f(x)为奇函数,∴f(t2+2t+k)>f(2t2-2t+5)解集非空,
又∵y=f(x)在R上单调递减,∴t2+2t+k<2t2-2t+5,
当t∈[0,5]时有实数解,
∴k<t2-4t+5=(t-2)2+1当t∈[0,5]时有实数解,
而当t∈[0,5]时,1≤(t-2)2+1≤10,
∴k<10.