已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
(I)求证直线AB过定点(0,4);
(II)求△OAB(O为坐标原点)面积的最小值
(Ⅰ)设切点为A(x1,y1),B(x2,y2),又y'= x,
则切线PA的方程为:y-y1= x1(x-x1),即y= x-y1,
切线PB的方程为:y-y2= (x-x2)即y= x-y2,
由(t,-4)是PA、PB交点可知:-4= x1t-y1,-4= x2t-y2,
∴过A、B的直线方程为-4= tx-y,
即tx-y+4=0,所以直线AB:tx-y+4=0过定点(0,4).
(Ⅱ)由 ,得x2-2tx-16=0.
则x1+x2=2t,x1x2=-16,
因为S△OAB= ×4×|x1-x2|=2 =2 ≥16,当且仅当t=0时,S最小=16
只是在网上搜的答案,其中又y'= x是为什么?
人气:369 ℃ 时间:2020-03-29 04:03:05
解答
就是又对抛物线方程X^2=4y进行求导,也就是求斜率,求得斜率后带入PA和PB的点斜式切线方程.
推荐
- 已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.(I)求证直线AB过定点(0,4);(II)求△OAB(O为坐标原点)面积的最小值.
- 已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10
- 已知抛物线C:x^2=4y,直线l:y=-1,PA、PB是曲线C的两切线,切点分别为A、B,若P在l上,证明PA⊥PB
- 过点P(3/2,-1)作抛物线y=ax2的两条切线PM、PB (U,B为切点),若PA• PB=0,则a= _ .
- 设抛物线C:y=x^2的焦点为F,动点P在直线L:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线分别相切于A、B两点.
- ()全社会一致行动起来,()维护和平,制止战争.关联词填空
- 比较大小 1/(tan(-13π/7)),1/(tan9π/8)
- 一批苹果,卖出总数的20%后,有运来40箱,这时的苹果与原来的比是28:25,这时的苹果多少箱
猜你喜欢