1,解奇函数f(x)在定义域(-1,1)上是减函数,且满足f(1-m)+f(m²-1)<0
即f(1-m)+f(m²-1)<-f(m²-1)=f(1-m²)
即-1<1-m<1-m²<1
解得0<m<1
2设f(x)=ax^2+bx+c,由f(x+1)+f(x-1)=2x²-4x.
知a(x+1)^2+b(x+1)+c+a(x-1)^2+b(x-1)+c=2x²-4x
2ax²+2bx+2a²+2c=2x²-4x
解得a=1,b=-2,c=-1
f(x)=ax^2+bx+c=x^2-x-1
f(1+√2)=(1+√2)²-(1+√2)-1
=3-2√2-√2-2
=1-3√3