四边形ABCD的对角线AC、BD的长分别为m、n.可以证明当AC⊥BD时(如图①),四边形ABCD的面积
S=mn.那么当AC,BD所夹的锐角为θ时(如图②),四边形ABCD的面积S=( )
A.
mn
B.
mnsinθ
C.
mncosθ
D.
mntanθ
如图,设AC、BD交于O点,在①图形中,设BD=m,OA+OC=n,所以S四边形ABCD=S△ABD+S△CBD=12m•OC+12m•OA=12mn;在②图形中,作AE⊥BD于E,CF⊥BD于F,由于AC、BD夹角为θ,所以AE=OA•sinθ,CF=OC•sinθ,∴S四边...