已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x2-4x+b=0有两个相等的实数根,判断△ABC的形状.
人气:334 ℃ 时间:2019-08-28 14:00:01
解答
∵关于x的一元二次方程x2-4x+b=0有两个相等的实数根,
∴b2-4ac=16-4b=0
解得:b=4,
∵a=3,c=5,
∴32+42=52,
∴△ABC为直角三角形.
推荐
- 已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,那么这个三角形是 ( ) A.等边三角形 B.等腰三角形 C.不等边三角形 D.直角三角形
- 已知a、b、c分别是三角形ABC的三边长,关于x的一元二次方程(c+b)x^2-2ax+(c-b)=0有两个相等的实数根,
- 已知a.b.c是三角形ABC的三边长,求证:关于x的一元二次方程cx^2-(a+b)x+c/4=0有两个不相等的实数根
- 已知a,b,c为三角形ABC三边,求证:关于X的一元二次方程cx^2-(a+b)x+c/4=0有两个不相等实数根
- 已知a、b、c是三角形ABC的三边,关于x的一元二次方程(a+b)x平方-2cx-(a-b)=0有两个相等的实数根,
- 世界四大渔场?
- 不积蛙步,无以至千里;不积小流,无以成江海.
- 已知数列{an}满足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*. (1)求通项公式an; (2)求数列的前n项的和Sn.
猜你喜欢