设数列{an}的前n项和为Sn=2an-4,bn=log2an,cn=1/bn^2,求证:数列{an}是等比数列?
人气:442 ℃ 时间:2019-10-10 04:51:26
解答
Sn=2an -4
Sn = 2 [Sn - S] - 4
Sn = 2S + 4
Sn + 4 = 2 (S + 4)
所以 Sn + 4 构成公比为 2 的等比数列
Sn + 4 = (S1 + 4)*2^(n-1)
利用 S1 = 2a1 - 4 = a1 求出 S1 = a1 = 4
Sn + 4 = (4 + 4)*2^(n-1)
Sn = 4*(2^n -1)
an = Sn - S = 4*2^n -1 - 4*2^(n-1) + 1 = 2^(n+1)
bn = log2 an = n+1
cn = 1/bn^2 = 1/(n+1)^2
因为 an = 2^(n+1),所以
a/an = 2^(n+2)/2^(n+1) = 2
所以 数列{an}是等比数列
---------------
此题目中 bn=log2an,cn=1/bn^2 没发挥作用
推荐
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求其通项.设cn=an/2^n,求证cn是等差数列;求数列的通项公式和前N项和公式
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
- 已知在等比数列{an}中,a2=2,a5=128,若bn=log2an,求数列{bn}前n项和Sn
- 已知数列{an}是等比数列,首项a1=8,公比q>0,令bn=log2an,设sn为{bn}的前n项和,若
- 数列{an}中,Sn为前n项和,S(n+1)=4an+2,a1=1.设bn=a(n+1)-2an,证明{bn}是等比数列
- 用浓硫酸充分吸收三氧化硫可以得到H2SO4·SO3若用1Kg98%的浓硫酸充分吸收三氧化硫后,在进行稀释,可以得到98%的硫酸质量
- 什么是三元一次方程组
- 小学数学六年级下册课时作业第一单元测试题答案高手请进,拜托我有急用
猜你喜欢