> 数学 >
若直角三角形的两条直角边为ab,斜边为c,斜边上的高位h,则有
A ab=h^2
B a^2+b^2=2h^2
C a^2分之1+b^2分之1=h^2分之1
D a分之1+b分之1=h分之1
Why 为什么
人气:273 ℃ 时间:2020-05-22 01:59:25
解答
Q125756514,
若直角三角形的两条直角边为ab,斜边为c,斜边上的高位h
根据三角形面积相等,则有:a×b÷2=c×h÷2,即ab=ch
根据勾股定理,则有a^2+b^2=c^2
下面是过程:
1/a^2+1/b^2
=(a^2+b^2)/(a^2×b^2) 因为a^2+b^2=c^2,所以
=c^2/(a^2×b^2)
=c^2/(ab)^2 因为ab=ch,所以
=c^2/(ch)^2
=c^2/(c^2×h^2) 分子分母同时约去c^2
=1/h^2
即:1/a^2+1/b^2=1/h^2 ,所以选C.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版