设函数f(x)=lg(x²-2x+a),若a>1,且函数f(x)在区间〔-1,4〕上的最大值为1,求a的值?
人气:351 ℃ 时间:2019-10-17 01:10:25
解答
设g(x)=x²-2x+a=(x-1)²+a-1>0.
当x>1时,g(x)单调递增,
在(1,4】上f(x)的最大值是f(4)=lg(a+8),
当x<1时,g(x)单调递减,
在【-1,1),f(x)的最大值是f(-1)=lg(a+3),
又f(1)=lg(a-1),
且lg(a-1)<lg(a+3)<lg(a+8),函数f(x)在区间〔-1,4〕上的最大值为1所以f(4)=lg(a+8)=1
因而a+8=10,a=2
推荐
- 函数f(x)=lg(x^2-2x+a),若a>1,且函数在区间〔-1,4〕的最大值为1,求a
- 设a>0且a不等于1,函数f(x)=a^lg(x^2-2x+3)有最大值,求函数f(x)=loga(3-2x-x^2)的单调区间
- 如果函数f(x)=lg(x(x-2/3)+1) x属于1,3/2的闭区间 那么f(x)的最大值为
- 设a>0.a≠1,函数f(x) =a^lg(x^2-2x+3)有最大值,求函数f(x) =㏒a(3-2x-x^2)的单调区间
- 若a>0,a不等于1,函数y=a的lg(x^2-2x+3)次方有最大值,求函数f(x)=log(3-2x-x^2)的单调区间
- 【NO2生成NO与O2的可逆反应】在定容密闭容器中反应,达到平衡的标志是 1.用NO2,NO,O2的物质的量浓度变化
- 地球的赤道近视圆形,赤道的半径约6378.2千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳长增加6.28米,使绳子与地面之间有均匀的缝隙,请问缝隙的宽度是多少,一只高0.8米的猎犬能否从缝隙中通过.
- 设集合A={xl2kπ≤x≤2kπ+π,k∈Z},集合B={xllxl
猜你喜欢