半径为5的球内有内接四面体A-BCD,AB=6.CD=8,求此四面体体积的最大值.
人气:371 ℃ 时间:2020-04-08 13:05:42
解答
当AB与CD距离d为最大值,且AB⊥CD时,四面体ABCD的体积=6*8*d*sinθ/6最大;
球心O到AB距离OG=4,球心O到CD距离OH=3
d最大=4+3=7,sinθ最大=1,四面体ABCD的体积最大=6*8*d*sinθ/6=56
【【不清楚,再问;满意,祝你好运开☆!】】
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)