设a∈R,函数f(x)=ax3-3x2.
(Ⅰ)若x=2是函数y=f(x)的极值点,求a的值;
(Ⅱ)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.
人气:266 ℃ 时间:2019-08-19 11:26:25
解答
(Ⅰ)f'(x)=3ax2-6x=3x(ax-2).因为x=2是函数y=f(x)的极值点,所以f'(2)=0,即6(2a-2)=0,因此a=1.经验证,当a=1时,x=2是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3-3x2+3ax2-6x=ax2(x+3)-3x(...
推荐
- 设a属于R,函数f(x)=ax^3-3x^2,(1)x=2是函数y=f(x)的极值点.
- 设a∈R,函数f(x)=ax3-3x2. (Ⅰ)若x=2是函数y=f(x)的极值点,求a的值; (Ⅱ)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.
- 设a∈R,函数f(x)=ax^3-3x^2,若x=2是函数y=f(x)的极值点,求a的值
- 设a属于R ,函数f(x)=ax^3—3x^2,x=2是函数y=f(x)的极值点.求(1)a的值 (2)求函数f(x)=ax^3—3x^
- 已知函数f(x)=x^3-ax^2+3x,若x=3是f(x)的一个极值点
- 迟日江山丽,春风花草香.表达了作者怎样的情感
- 文化的本质内涵是什么?
- 甲,乙两队共修同一段路,12天修完.已知两队工作效率的比是3:2,如果甲队单独修
猜你喜欢