实数k取何值时,一元二次方程x²-(2k-x)x+2k-4=0(1)有两个正跟(2)有两个异号根,且正根的绝对值
较大,(3)一根大于3,一根小于3
人气:341 ℃ 时间:2019-10-02 22:20:57
解答
x²-(2k-x)x+2k-4=0
x²-2kx+x²+2k-4=0
2x²-2kx+2k-4=0
x²-kx+k-2=0
x={k±√[k²-4(k-2)]}/2
=[k±√(k²-4k+8)]/2
k²-4k+8=(k-2)²+4恒大于0,方程恒有两根
(1)显然k+√(k²-4k+8)>k-√(k²-4k+8)
故k-√(k²-4k+8)>0
k>√(k²-4k+8)>0
易见,k和√(k²-4k+8)都是正数
同时平方时不等号不变,得,k²>k²-4k+8
故k>2
(2)显然k+√(k²-4k+8)>k-√(k²-4k+8)
故k+√(k²-4k+8)>0,k-√(k²-4k+8)√(k²-4k+8)-k
k>0
综合以上,00矛盾,故k-√(k²-4k+8)恒小于3
那么由题设可知必然是k+√(k²-4k+8)>3,k-√(k²-4k+8)3 ……(a)
√(k²-4k+8)=√[(k-2)²+4]≥2
故,k>1时(a)式恒成立
考虑k≤1时
√(k²-4k+8)>3-k≥2>0
√(k²-4k+8)和3-k都是正数
同时平方时不等号不变,得,k²-4k+8>k²-6k+9
k>1/2即1/21/2时,一根大于3,一根小于3
推荐
- 实数k取何值时,一元二次方程x^2-(2k-3)x+2k-4=0 1,有两个实数根,2,有两个异号根,并且正根的绝对值较大
- 实数K取何值时,一元二次方程x²-(2k-3)x+2k-4=0,有两个异号根,并且正根的绝对值较大?
- 实数k取何值时,一元二次方程x²-(2k-3)x+2k-4=0 (1)有两正根 (2)两根异号且正根绝对值较大
- 实数K取何值时,一元二次方程x²-(2k-3)x+2k-4=0 有两个实数根 有两个异号根,并且正跟的绝对值较大
- 实数K取何值时,一元二次方程x^-(2k-3)x+2k-4=0根的情况满足条件:
- 会议记录具有什么特点
- press的用法
- 123×76-124×75怎么简算?
猜你喜欢
- 英文物理题(牛二律)
- 一根钢材长2米,截去了30%后,在截去0.4米,还剩多少米?
- 由两个相同的字组成的字比如"林"
- f(x)是R上的奇函数,且x>=0时,f(x)=x^2,若对任意 t
- After lunch,the little boy _____________ in the park.
- 将一块棱长是8分米的正方体钢坯锻造成长0.8米、宽0.64米的长方体钢材,锻成的钢材有多厚(用方程解)?
- 分词做状语时的否定形式及虚拟语气倒装时的否定形式
- 张师傅做一个零件要3分钟,徒弟小王做一个零件要5分钟,他们合作了一段时间共做了800个零件.师傅两人各做