已知圆M:x2+(y-4)2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA、PB,切点为A、B
求证:直线AB必过定点,并求出该定点的坐标
人气:224 ℃ 时间:2019-11-01 02:16:41
解答
设 P(a,b),则 a-2b=0 ,
过 P 向圆引两条切线,切点分别为 A、B ,则直线 AB 的方程为
ax+(b-4)(y-4)=4 ,(这有现成的公式,其实就是当 P 在圆上时的切线方程)
化简得 ax+(b-4)y-4b+12=0 .
分离变量得 a*x+b*(y-4)-4(y-4)-4=0 ,
令 y-4= -2x ,且 -4(y-4)-4=0 ,解得 x= 1/2 ,y=3 ,
因此直线AB恒过定点(1/2,3).
推荐
- 已知圆M:x^2+(y-4)^2=4,直线l的方程为x-2y=0,点P是直线l上一动点,过点P作圆的切线PA,PB,切点为A、B.
- 已知圆M:X2+(Y-2)2=1,直线L:X-2Y=0,点P在直线上,过点P作圆M的切线PA、PB,切点为A
- 已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
- 已知点P(x,y)是直线kx+y+4=0(k>0)上动点,PA,PB是圆C:x^2+y^2-2y=0的两条切线,A,B是切点,
- 已知P是直线3x+4y+8=0的动点,PA,PB是圆x^2+y^2-2x-2y+1=0的两条切线,A,B是两个切点,C是圆心,求四边形PACB的面积的最小值,并求此时点P的坐标.
- 南辕北撤是什么意思啊
- 第一题 (-5/12)的2007次方 * (2.4)的2006次方等于
- 普通的换算单位题:4升=( )毫升=( )立方分米
猜你喜欢