已知函数f(x)=ax2+bx+c(a>0,b∈R,
f(x)=ax2+bx+c(a>0,b∈R,c∈R)
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=f(x)x>0,-f(x)x<0,求F(2)+F(-2)的值
(2)若a=1,c=0,且绝对值f(x)≤1在区间(0,1】恒成立,试求b取值范围
人气:396 ℃ 时间:2020-04-10 05:56:50
解答
本题是导数的综合运用问题,估计应该属于中高档题.
1、求导,有f'(x)=(x^3-3x^2-9x+t+3)e^x,故函数f(x)有三个极值点,即方程x^3-3x^2-9x+t+3=0有三个根,再设g(x)=x^3-3x^2-9x+t+3,即函数g(x)与x轴要有三个交点,也即函数g(x)的极大值要大于0,且其极小值要小于0.再对g(x)求导可知,g(x)的极大值为g(-1),g(x)的极小值为g(3).第二小问,a、b、c是方程x^3-3x^2-9x+t+3=0的三个根,即x^3-3x^2-9x+t+3=(x-a)(x-b)(x-c),再利用对应项系数相等,是否可以得到t关于a、b、c中某个字母的表达式,建立t与之的函数式,比如得到t=h(a),估计要确定下a的取值范围.
2、由于x∈[1,m],则x>0,所以f(x)≤x等价于[f(x)/x]≤1,即函数f(x)/x在区间[1,m]上的最大值小于等于1,这个最大值中肯定含有字母m、t,转而将此看成是关于t的表达式,即此表达式在t∈[0,2]上有解问题来研究.
由于计算和打字比较复杂,思路分析如上,你自己去试下,我想应该没问题了.
(1)
f(-1)=0,且c=1
a-b+1=0
a=b-1
当x=-1时取道最小值
-b/(2a)=-1
b=2a
得到:a=1,b=2
f(x)=x^2+2x+1
F(x)=x^2+2x+1 (x>0)
F(x)=-x^2-2x-1 (x
推荐
- 已知函数f(x)=x^2-bx+c满足f(1+x)=f(1-x),且f(0)=3,比较f(b^x)与f(c^x)的大小.
- 已知二次函数y=ax2+bx+1 当x=1时 y=-2 当x=2时 y=3 求这个函数的解析式
- 已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( ) A.无实数根 B.有两个相等实数根 C.有两个异号实数根 D.有两个同号不等实数根
- 已知f(x)=ax2+bx+c,f(0)=0,对任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)=x有两个相等实根. (1)求f(x); (2)是否存在实数m,n,使得函数f(x)在区间[m,n]上的值域为[3m,3n]?
- 已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)=f(x) x>0或-f(x) x0,且f(x)为偶函数,判断F(m)+F(n)能否大于0
- 如果 3 *7=25 ,则该数为几进制 是怎么算的
- 松树的叶子是什么形状的?
- 将固体NH4I置于密闭容器中,在一定温度下发生下列反应,
猜你喜欢