已知数列﹛an﹜是一个公差大于零的等差数列,且a3a6=55,a2+a7=16,数列﹛bn﹜的前n项和为sn,且sn=2bn-2
(1)求数列﹛an﹜,﹛bn﹜的通项公式
(2)设cn=an/bn,Tn=c1+c2+…﹢cn,求Tn
人气:206 ℃ 时间:2020-03-10 18:55:24
解答
1.
设公差为d,则d>0
数列是等差数列,a3+a6=a2+a7=16,又a3a6=55,a3、a6是方程x²-16x+55=0的两根.
(x-5)(x-11)=0
x=5或x=11
d>0 a6>a3
a3=5 a6=11
a6-a3=3d=11-5=6
d=2
an=a1+(n-1)d=a3+(n-3)d=5+2(n-3)=2n-1
n=1时,b1=S1=2b1-2
b1=2
n≥2时,bn=Sn-S(n-1)=2bn-2-[2b(n-1)-2]
bn=2b(n-1)
bn/b(n-1)=2,为定值,数列{bn}是以2为首项,2为公比的等比数列.bn=2ⁿ
数列{an}的通项公式为an=2n-1;数列{bn}的通项公式为bn=2ⁿ
2.
cn=an/bn=(2n-1)/2ⁿ
Tn=c1+c2+c3+...+cn=1/2+3/2²+5/2³+...+(2n-1)/2ⁿ
Tn /2=1/2²+3/2³+...+(2n-3)/2ⁿ+(2n-1)/2^(n+1)
Tn-Tn /2=Tn /2=1/2 +2/2²+2/2³+...+2/2ⁿ-(2n-1)/2^(n+1)
Tn=1+2/2+2/2²+...+2/2^(n-1) -(2n-1)/2ⁿ
=2[1+1/2+1/2²+...+1/2^(n-1)] -(2n-1)/2ⁿ -1
=2×1×(1-1/2ⁿ)/(1-1/2) -(2n-1)/2ⁿ -1
=3 -(2n+3)/2ⁿ
推荐
- 已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16(1)若数列{an}和数列{bn}满足等式:an=
- 已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16 (1)求数列{an}
- 已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16 数列b1,b2-b1……,bn-bn-1是首项为1,
- 已知《an>是公差大于0的等差数列,满足a3a6=55 a2+a7=16 数列b1,b2-b2,b3-b2.bn-b(n-1)
- 己知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.求数列{an}的通项公式;
- 已知双曲线x2/a2-y2/b2=1(a>0,b>0)与抛物线y2=8x有一个公共的焦点F,且两双曲线的一个交点为P,若|PF|=5则双曲线渐近线方程是?
- 若tan(π+x)=2,求: (1)4sinx−2cosx5cosx+3sinx; (2)sinxcosx/1+cos2x.
- 设a等于2013分之一的2013次方乘负2013的2014次方,b等于负10的九次方乘负13的10次方乘负130分之一的九次方,求(a-b)的值,并用科学计数法表示结果
猜你喜欢