设A(
| y2A |
| 4p |
| y2B |
| 4p |
∴kOA=
| yA | ||
|
| 4p |
| yA |
| 4p |
| yB |
由OA⊥AB,得kOA•kOB=
| 16p2 |
| yAyB |
依点A在AB上,得直线AB方程
(yA+yB)(y−yA)=4p(x−
| y2A |
| 4p |
由OM⊥AB,得直线OM方程y=
| yA+yB |
| −4p |
设点M(x,y),则x,y满足②、③两式,将②式两边同时乘以−
| x |
| 4p |
并利用③式整理得
| x |
| 4p |
由③、④两式得
−
| x |
| 4p |
由①式知,yAyB=-16p2
∴x2+y2-4px=0
因为A、B是原点以外的两点,所以x>0
所以M的轨迹是以(2p,0)为圆心,以2p为半径的圆,去掉坐标原点.

