x,y,z属于R+,求证根号下(x^2+y^2-xy)+根号下(y^2+z^2-yz)大于根号下(x^2+y^2-xz)
人气:149 ℃ 时间:2019-11-06 12:09:45
解答
任意做一个三角形ABC,并在三角形内部找到一点O,使得∠AOB=∠BOC=∠COA=120度,不妨设OA=x,OB=y,OC=z,
在三角形AOB中,有余弦定理可得根号下(x^2+y^2-xy)=AB,
同理有根号下(y^2+z^2-yz)=BC,
根号下(x^2+y^2-xz)=CA
又因为在三角形ABC中有AB+BC>CA
所以根号下(x^2+y^2-xy)+根号下(y^2+z^2-yz)大于根号下(x^2+y^2-xz
推荐
- 已知x>0,y>0,z>0,求证:根号(x^2+xy+y^2)+根号(x^2+xz+z^2)+根号(y^2+yz+z^2)>3/2(x+y+z)
- x根号(yz)+y根号(xz)=39-xy y根号(xz)+z根号(xy)=52-yz z根号(xy)+x根号(yz)=78-xz
- 若x-y=1\(2+根号3) y-x=1\(2-根号3)求x^2+y^2+z^2-xy-xz-yz
- 若x,y,z都是正实数,且x^2+y^2+z^2=1,求证yz/x+xz/y+xy/z>=根号3
- 已知正数x,y,z满足x+y+z=xyz,求1/根号(xy)+1/根号(yz)+2/根号(xz)的最大值.
- 细菌分解代谢产物的检测和鉴定是如何实现的?
- 具体
- 人类能大量捕杀动物吗?
猜你喜欢