设向量组a1,a2,...,as的秩为r,证明其中任意选取m个向量构成向量组的秩>=r+m-s
人气:497 ℃ 时间:2020-04-11 22:29:37
解答
向量组a1,a2,...,as的秩为r,所以其中存在一个含r个向量ai的线性无关的向量组.不妨设 a1,...,ar,线性无关.共r个向量.在此之外共s-r个向量.
其中任意取 m个向量,
如果 m<= s-r,自然有,m+r-s>=0
如果 m>s-r,这m个向量中,最多有 s-r个不是 a1,...,ar之一.所以至少有 m-(s-r)个向量都在a1,..,ar之中.而这m-(s-r)个向量线性无关.所以 这m个向量的秩 >= 其中的落在 a1,...,ar中的向量的秩 >= m-(s-r)=r+m-s
推荐
- 设n维向量a1,a2.aS的秩为r
- 已知向量组a1,a2,...,as的秩为r.证明:a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组.
- 线性代数证明题:设向量组a1,a2,a3,.as的秩为r1,向量组β1,β2,.βt的秩为r2,(接下面)
- 已知向量组A:A1,A2,A3,向量组B,:A1,A2,A3,A4,且R(A)=R(B)=3,证明:向量组A1,A2,A3,A4-A3的秩为3.
- 证明:秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.
- 求初中古文及古文字词解释,翻译
- 求英文翻译:None of us is afraid of difficulties谢谢啊!
- 72有几个约数是3的倍数?这种题有什么方法?
猜你喜欢