求由抛物线y^2=2x与直线x=1/2所围成的图形绕直线y=-1旋转而成的立体的体积
人气:411 ℃ 时间:2019-12-06 23:24:16
解答
抛物线在x轴以上的部分为y = √(2x),在x轴以下的部分为y = -√(2x)
直线x = 1/2与抛物线交于A(1/2,-1)
在x处(0 < x < 1/2):旋转体是个圆环,其内径为r = -√(2x) - (-1) = 1 - √(2x)
外径为R = √(2x) - (-1) = 1 + √(2x)
截面积S = πR² - πr² = 4π√(2x)
体积为S从0到1/2的积分,结果是4π/3
推荐
猜你喜欢
- 游艇会是干什么的
- 再括号里填上合适的字piao勇
- I used a second time to fall in love with you,a whole life to forget you
- 两个容积相同的瓶子里面都装满酒精溶液,酒精与水的比分别是3:2和3:1.当把两瓶酒精溶液混合在一起时,酒精与水的比是多少
- 如图所示为示波管中电子枪的原理示意图,示波管内被抽成真空.A为发射电子的阴极,K为接在高电势点的加速阳极,A、K间电压为U,电子离开阴极时的速度可以忽略,电子经加速后从K的小孔
- 实数,质数,素数,自然数,有理数...定义?
- 水果市场运来香蕉、苹果、梨、三种水果,其中香蕉、苹果共30吨,梨占总数的1/4,水果市场一共运来水果多少
- Finally Mary was admitted by Beijing University, for which she ___ five times.选择题?