三角形ABC中,D为AB的中点,分别延长CA,CB到E,F,使DF=DE,过E,F 作CA,CB的垂线,相交于点P,求∠PAE=∠PBF
人气:231 ℃ 时间:2019-08-17 17:01:56
解答
取 PA 中点M ,取PB中点N
因为M、N分别是Rt△AEP和Rt△BFP斜边的中点,
所以,EM=AM,FN=BN
因为 DM 和 DN 是△PAB中位线
所以 DM‖BN,DM=BN,DN‖AM,DN=AM
以及 DM=BN=NP=NF,DN=AM=MP=ME
以及 ∠AMD=∠BND = ∠APB
又因为 DE=DF,所以 △DEM≌△FDN
对应角相等 ,则
∠EMD=∠FND
则∠AME=∠BNF
而△AME、△BNF均为等腰三角形
所以,∠PAE=∠PBF
推荐
- 如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是AB的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F. (1)求证:EF是⊙O的切线; (2)若EF=8,EC=6,求⊙O的半径.
- Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.如果CA=CB,求证
- 三角形 ABC 角c=90 D为AB中点 DE垂直DF E F分别为CA CB上点 求证AE平方 加 BF平方等于 EF的平方
- 在三角形ABC中,角C=90度,CA=CB,点D是AB边的中点,E,F分别在CA,CB上,且角EDF=90度,求DE=DF
- 如图,△ABC中,CA=CB,点D为AC中点,DE⊥AC,DE交BC于点E,△ABE的周长为10cm,AC-AB=2cm.求AB与BC的长.
- 有15枚硬币共七枚,求其中一角、五角、一元三种硬币各多少枚?
- 设-1小于或等于x小于或等于2,则(x减2的绝对值)减(2分之1x的绝对值)加(x加2的绝对值)的最大值与最小值之差为多少
- 数学题经过直线:2x+y-3=0和直线:3x-2y-1=0的交点,且与原点的距离为根号2的直线方程
猜你喜欢