∴前n项和Sn=na1+
n(n−1) |
2 |
n(n−1) |
2 |
∴
1 |
Sn |
1 |
n2+2n |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n−1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=
3 |
4 |
2n+3 |
2(n+1)(n+2) |
1 |
S1 |
1 |
S2 |
1 |
Sn |
n(n−1) |
2 |
n(n−1) |
2 |
1 |
Sn |
1 |
n2+2n |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n−1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
3 |
4 |
2n+3 |
2(n+1)(n+2) |