求圆心在直线x-y-4=0上,且经过且经过两圆x^2+y^2+6x-4=0和x^2+y^2+6y-28=0的交点的圆的方程
人气:104 ℃ 时间:2019-12-02 02:08:57
解答
根据圆系的知识,经过两圆的交点的所有(除一种情况)圆的方程可设为:
X^2+Y^2+6X-4+λ(X^2+Y^2+6Y-28)=0
整理得出圆心坐标:(-3/1+λ,-3λ/1+λ)带入直线方程解得λ=-7
则圆的方程为:X^2+Y^2-X+7Y-192=0
推荐
- 求经过两圆X^2+Y^2+6X-4=0和X^2+Y^2+6Y-28=0的交点,并且圆心在直线X-Y-4=0上的圆的方程
- 求过两圆x^2+y^2+6x-4=0和x^2+y^2+6y-28=0的交点,且圆心在直线x-y-4=0上的圆的方程
- 求经过两圆X^2+Y^2+6X-4=0和X^2+Y^+6Y-28=0的交点且圆心在直线X-Y-4=0上的圆的方程
- 求过两圆 x+y+6x-5=0和x+y+6y-7=0的两个交点、且圆心在直线x-y=4上的圆的方程.
- 求经过两圆C1:x^2+y^2+6x-4=0和C2:x^2+Y^2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.
- 如果多项式x的平方-3x+m是一个完全平方公式,试确定m的值,
- 如图,AB是⊙O的一条弦,OD⊥AB于点D,点E在⊙O上.(2)若OC=3,OA=5,求AB的长.
- not much of anybody是什么意思,谢谢?
猜你喜欢