已知抛物线的顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1的焦点,且准线与双曲线交与(2,3)和(2,-3)
两点,求此抛物线和双曲线!
人气:171 ℃ 时间:2019-08-19 18:41:35
解答
抛物线 y^2=2ax,准线为x=-a/2 易知抛物线准线为x=2 ,故a=-4
准线过双曲线焦点,故双曲线右焦点为 (2,0) 即c=2,
再把点(2,3)代入双曲线方程,得 4/a^2 - 9b^2 = 1 结合a,b,c关系,解出双曲线.
推荐
- 抛物线顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点,且垂直于双曲线的实轴,又P(3/2,√6)是抛物线和双曲线的一个交点,求抛物线和双曲线的方程
- 已知抛物线顶点在原点,它的准线过双曲线(x平方/a平方)-(y平方/b平方)=1的一个焦点,且与双曲线的...
- 已知抛物线的顶点在原点,焦点在x轴上,其准线过双曲线x2a2-y2b2=1(a>0,b>0)的一个焦点;又抛物线与双曲线的一个交点为M(3/2,-6),求抛物线和双曲线的方程.
- 已知抛物线的顶点在原点,其准线经双曲线X^/A^ - Y^/B^=1的焦点,且准线与双曲线交于P(2,3)和Q(-2,3)
- 抛物线顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1(a大于0,b大于0),的一个焦点,并与双曲线的实轴垂直
- 想着暑假预习高一的新课,请问高一有哪些课本,分别是什么版本的?顺便补充一问:选修和必修是肿么一回事?=
- they do homework at seven o'clock every day怎么变一般疑问句?
- 歧化反应原理,从得失电子方面解释一下,
猜你喜欢
- 在2-【2(x+y)-()】=x+2,括号内应填
- 在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
- 墨守成规象征哪个人物
- 将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
- 1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
- chuck wall
- 如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
- 替凡卡的爷爷写一封信给凡卡