> 数学 >
求积分∫ 1/(1+e^2x) dx
人气:227 ℃ 时间:2020-06-02 04:16:12
解答
设t=e^(2x),x=(lnt)/2,dx=1/(2t) dt
∫dx/[1+e^(2x)]
= (1/2)∫dt/[t(1+t)]
= (1/2)∫[(1+t)-t]/[t(1+t)] dt
= (1/2)∫[1/t - 1/(1+t)] dt
= (1/2)[ln|t| - ln|1+t|] + C
= (1/2)[ln|e^(2x)| - ln|1+e^(2x)] + C
= x - (1/2)ln|1+e^(2x)| + C
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版