设A使奇数阶正交矩阵,且det(A)=1,证明det(E-A)=0.
人气:150 ℃ 时间:2020-03-22 14:58:09
解答
证明:A是奇数阶正交矩阵则A*AT=E ,(AT为A的转置)而对于:det(E-A)则代入A*AT=Edet(E-A)=det(A*AT-A)=det(A)*det(AT-E)det(AT-E)=det(A-E)T=det(A-E)因为是奇数阶正交矩阵.设为n,所以det(A-E)=(-1)^n*det(E-A)=-det...
推荐
- A是n阶正交矩阵,若A的行列式为1,证明当n为奇数时,E—A的行列式为0
- A是一个n阶正交矩阵,求证:(1)若|A|=-1,则|A+E|=0(2)若|A|=1,且n为奇数,则|A-Z|=0
- 设A为奇数阶正交矩阵,det(A)=1,证明1是A的一个特征值
- 设A为n阶正交矩阵,试证:(1)若|A|=-1,则|E+A|=0(2)若n为奇数,且|A|=1,则|E-A|=0;
- 如果A为n阶正交矩阵,且det(A)=-1,则det(A'-A*)=
- The gap's being closed easily enables people to enjoy...
- 英语:so far this year we () a fall in house prices by between 3 and 5 percent
- I hate those people who like to take sth out of nothing.
猜你喜欢