F1,F2分别是椭圆x2/4+y2=1的两个焦点,问:在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出点P的坐标,如果不存在,说明理由.(焦点在X轴上)
人气:475 ℃ 时间:2020-01-27 05:32:39
解答
设点P的坐标为(m,n).由椭圆方程x^2/4+y^2=1,得:c^2=4-1=3,∴c=√3.∴椭圆的焦点是F1(-√3,0),F2(√3,0).∴向量PF1=(-√3-m,-n), 向量PF2=(√3-m,-n).∵PF1⊥PF2,∴向量PF1·向量PF2=0,∴...
推荐
- 点P是椭圆16X方+25Y方=1600上一点,F1,F2,是椭圆的两个焦点.又知点P在X轴上方,F2为椭圆的右焦点,直线PF2的斜率为负的四倍更号3,求三角PF1F2的面积
- 已知曲线方程x^2sinα-y^2cosα=1(0≤α≤2pai);
- 点P是椭圆16X方+25Y方=1600上一点,F1,F2,是椭圆的两个焦点.又知点P在X轴上方,F2为椭圆的右焦点,直线PF2的斜率为负的四倍更号3,求三角PF1F2的面积
- 椭圆
- 高中数学选修2-1椭圆
- 80-1.1-2.1-3.1-4.1-5.1-6.1-7.1-8.1-9.1-10.1用简便方法计算
- 一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球
- 抛物线焦点到准线的距离是2p吗?
猜你喜欢