已知平面上A,B,C三点共线,且向量OC=f(x)向量OA+[1-2sin(2x+π/3)]向量OB,则函数f(x)的最大值是
人气:286 ℃ 时间:2020-06-11 03:59:56
解答
因为A,B,C三点共线
所以f(x)+1-2sin(2x+π/3)=1
即f(x)=2sin(2x+π/3)
显然f(x)∈[-2,2]
推荐
- 问题已知A、B、C是直线L上的三点,向量OA,OB,OC满足OA=[y+2f'(1)]OB-(lnx/2)OC,则求函数y=f(x)的表达式.
- 已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sin,√2cosα),求向量OA与向量OB夹角的取值范围
- 已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐标原点.
- 已知A,B,C是直线l上的三点,O为直线l外一点,向量OA,OB,OC满足向量OA=[y-f′(o)]OB+sinx*OC,求函数y=f(
- 向量OB=(2,0),向量OC=(2,2),向量CA=(√2cos a,√2sin a),则向量OA与OB的夹角范围?
- 夜空中哪几颗星星最美丽?
- 请按照下面三个例句,完成后面三个句子
- 杭州西湖的风景天下闻名.在"曲院风荷",我们吟诵着什么?
猜你喜欢