设f(u,v)具有一阶连续可导数,z=f(xy,x/y),则∂z/∂y等于( )
人气:245 ℃ 时间:2020-03-25 08:20:26
解答
这个公式可以就这么运用,无限用下去!

推荐
- 设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x
- 求函数z=f(u,v),u=x+y,v=xy的复合函数z=g(x,y)的二阶混合偏导数∂²z/∂y∂x.
- 设z=y^2/(3X)+φ(XY),其中φ(u)有连续的导数,求:x^∂Z/∂X- xy∂z/∂y+y^2
- 复合函数偏导数题:设u=xy,v=x/y,变换方程x^2*(∂^2)z/∂x^2-y^2*(∂^2)z/∂y^2
- 设f具有一阶连续偏导数,求u = f(xy,x+y)的偏导数∂u/∂x,∂u/∂y
- 《郑板桥送贼诗》阅读答案(第三小题)
- KOH,KHCO3,KHSO3,K2CO3,K2SO3这5个的转化关系
- 证明:4k+1形式的正整数,都可以表示为两个正整数的平方和
猜你喜欢
- 求 太阳系的行星模型 与 原子的电子模型 类比
- 已知3m+4n-7=0,3a+4b+8=0,则根号[(m-a)^2+(n-b)^2]的最小值为……怎么解啊
- 初一上册级别的英语小故事 60~100词,最好不要有生词
- 1,4,5,6.每个数用一次,利用加减乘除及括号,结果等于24.
- 已知0<x<pai/2,化简:lg[cos xtan x+1-2sin^2(pai/2)]+lg[跟号2cos(x-pai/4)]-lg(1+sin2x) ...
- 从下列单词中找出不同的:camp April barefoot Valentine tennis winter
- 黑板天天被谁擦用英语怎么说
- 若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列