已知双曲线与椭圆x^2/49+y^249=1共焦点,切以y=±4/3x为渐近线,求双曲线方程
如题
今晚之前
谢谢
人气:329 ℃ 时间:2019-08-20 05:55:47
解答
x^2/49+y^2/24=1
则a^2=49,b^2=24,c^2=49-24=25
c=5
焦点坐标是:(-5,0),(5,0)
设双曲线方程是:x^2/a^2-y^2/b^2=1
渐近线方程是:y=(+/-)b/a*x=(+/-)4x/3.
故有:b/a=4/3,4a=3b
又c^2=a^2+b^2
25=a^2+(4a/3)^2
a^2=9
b^2=(4/3)^2a^2=16.
即方程是:x^2/9-y^2/16=1
推荐
- 双曲线C与椭圆x28+y24=1有相同的焦点,直线y=3x为C的一条渐近线.求双曲线C的方程.
- 双曲线C与椭圆x28+y24=1有相同的焦点,直线y=3x为C的一条渐近线.求双曲线C的方程.
- 求以椭圆3x2+13y2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程.
- 已知双曲线的渐近线方程为3x±4y=0 ,它的焦点是椭圆x^2/10+y^2/5=1的长轴端点,求此双曲线的方程
- 双曲线C与椭圆x²/8+y²/4=1有相同的焦点,直线y=√3x为C的一条渐近线,求
- 若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
- 已知函数f(X)=x2+ax+b,A={x|f(x)=2X}={2},试求a,b的值及f(x)
- 自东汉至西晋,北方少数民族大量内迁,出现这种现象的主要原因是( ) A.
猜你喜欢