> 数学 >
已知函数f(x)=2asin(2x-π/6)+b的定义域为[0,π/2],值域为[-5,1],求常数a,b的值
x∈[0,π/2]
则 2x-π/6 ∈[-π/6,5π/6]
所以 sin(x-π/6) ∈[-1/2,1]
(1) a>0
最大值为2a+b=1
最小值为-a+b=-5
所以 a=2,b=-3
(2)a
人气:169 ℃ 时间:2019-08-20 04:20:05
解答
你是不是看错了.sin(2x-π/6) ∈[-1/2,1]画个sin的图像把2x-π/6 ∈[-π/6,5π/6]的最大最小值找到
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版