已知A,B是三角形ABC的两个内角,向量a={根号2* Cos(A+B)/2}i+ {Sin(A-B)/2}j,
已知A,B是三角形ABC的两个内角,向量a={根号2* Cos(A+B)/2}i+ {Sin(A-B)/2}j,其中i,j为互相垂直的单位向量,若绝对值a=根号6/2
试问tanA*tanB是否为定值,请求出,否则请说明理由,
人气:293 ℃ 时间:2019-09-29 01:19:24
解答
是定值.1/3
由已知得:
( √2cos(A+B)/2)^2+ (sin(A-B)/2)^2=(√6/2)^2
cos(A+B)+1+1/2(1-cos(A-B))=3/2
1/2cosAcosB-3/2sinAsinB=0
tanAtanB=sinAsinB/(cosAcosB)=1/3
推荐
- 6.已知A,B是三角形ABC的两个内角,向量a={根号2* Cos(A+B)/2}i+ {Sin(A-B)/2}j,其中i,j为互相垂直的单位向量,若绝对值a=根号6/2(1)试问tanA*tanB是否为定值,请求出,否则请说明理由,(2)
- 已知A,B是三角形ABC的俩个内角.向量a=(根号2 cos(A+B)/2, sin(A-B)/2),且向
- 已知A,B是三角形ABC的两个内角,向量a={根号2* Cos(A+B)/2}i+ {Sin(A-B)/2}j,其中i,j为互相垂直的单位向量,若绝对值a=根号6/2
- 已知A,B是三角形ABC的两个内角,向量a={根号2* Cos(A+B)/2}i+ {Sin(A-B)/2}j,其中i,j为互相垂直的单
- 已知:A,B,C是三角形ABC的内角,a,b,c分别是其对边,向量m=(根号3,cos(兀-A)-1),n=(c
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢