在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).1求数列{an}的通项
2、若λan+1/an+1≥λ对任意n≥2恒成立,求实数λ的取值范围
3、设bn=√an,{bn}的前n项和为Tn,求证:Tn>2/3[根号﹙3n+1﹚ -1]
人气:190 ℃ 时间:2020-04-26 03:56:28
解答
首先证明an≠0(n>=1),这个用反证法很好证,然后再像一楼一样求解,第一问就解决了.an= 1/(3n -2).
对于第二问,由第一问结论,an的范围是(0,1],将λan+1/an+1≥λ变换:1/an+1≥λ(1-an),(n=1恒成立,因此只讨论n>=2,即an<=1/4的情形)
(1/an+1)/(1-an)≥λ,不等式左边看成一个关于an的函数,定义域为(0,1/4],可以得出其最小值为20/3,当且仅当an=1/4(n=2时).因此λ<=20/3为所求范围.
第三问用数学归纳法,只需要证明1/√3n+1>2/3(√3n+4-√3n+1),右边分母有理化一下,最后再整理:√3n+4+√3n+1>2√3n+1,这是显然的.
推荐
- 数列{an},a1=1,3anan-1+an-an-1=0(n≥2).1、求an;2、若λan+1/an+1≥λ对任意n≥2恒成立,求实数λ的
- 若数列{an},a1=2/3,且a(n+1)=an+1/【(n+2)(n+1)】,(n∈N+)则通项an=?
- 已知数列{An}满足:a1=1,a2=2,a(n+2)=[an+a(n+1)]/2,1,求通项公式
- 在数列{an}中,若a1=1,3anan-1(注:n-1是整体)+an-an-1(注:n-1是整体)=0(n大于等于2,n属于N)求通项an
- 在数列{an}中,a1=1,3anan-1+an-1=0(n》=2)证明:{1/an}是等差数列.求数列的通项
- I am tired,may you be happy
- (x四次方+4*x三次方+8x平方-16*x-48)/(x平方+4x+12)
- 求二元一次方程组的解
猜你喜欢