> 其他 >
求证:
(1)
1−2sinxcosx
cos2x−sin2x
=
1−tanx
1+tanx

(2)(cosβ-1)2+sin2β=2-2cosβ.
人气:165 ℃ 时间:2019-10-09 01:57:48
解答
(1)左=
1−2sinxcosx
cos2x−sin2x
=
cos2x+sin2x−2sinxcosx
cos2x−sin2x
=
(cosx−sinx)2
(cosx+sinx)(cosx−sinx)
cosx−sinx
cosx+sinx
1−tanx
1+tanx
=右边.
1−2sinxcosx
cos2x−sin2x
=
1−tanx
1+tanx

(2)左=(cosβ-1)2+sin2β=cos2β-2cosβ+1+sin2β=2-2cosβ=右边
故(cosβ-1)2+sin2β=2-2cosβ.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版