∴A(x1,y1)与B(x2,y2)关于原点中心对称,
∴x1=-x2,y1=-y2,
∵y=2x2+4x-2=2(x+1)2-4,
∴抛物线的对称轴为直线x=-1,顶点坐标为(-1,-4),
∴A点和B点在第一、三象限,设A点在第一象限,
∴B点坐标为(-x1,-y1),
∴y1=2x12+4x1-2,-y1=2x12-4x1-2,
∴x1=1,
∴y1=4,
∴A(1,4)与B(-1,-4),
∴AB=
(1+1)2+(4+4)2 |
17 |
故答案为2
17 |
(1+1)2+(4+4)2 |
17 |
17 |