∴BF=CF=
| 1 |
| 2 |
| a |
| 2 |
又∵BF∥AD,
∴BE=AB=b,
∴A,E两点到BC的距离相等,都为bsinα,(3分)
则S△ABF=
| 1 |
| 2 |
| a |
| 2 |
| 1 |
| 4 |
S△EFC=
| 1 |
| 2 |
| a |
| 2 |
| 1 |
| 4 |
∴S△ABF=S△EFC;(5分)
(2)
法一:当F为BC上任意一点时,
设BF=x,则FC=a-x,
∵四边形ABCD是平行四边形,
∴
| BF |
| AD |
| BE |
| BE+AB |
| x |
| a |
| BE |
| BE+b |
∴BE=
| bx |
| a−x |
在△EFC中,FC边上的高h1=BEsinα,
∴h1=
| bxsinα |
| a−x |
∴S△EFC=
| 1 |
| 2 |
| 1 |
| 2 |
| bxsinα |
| a−x |
| 1 |
| 2 |
又在△ABF中,BF边上的高h2=bsinα,
∴S△ABF=
| 1 |
| 2 |
∴S△ABF=S△EFC;(11分)
法二:∵ABCD为平行四边形,
∴S△ABC=S△CDE=
| 1 |
| 2 |
又∵S△AFC=S△CDF,
∴S△ABC-S△AFC=S△CDE-S△CDF,
即S△ABF=S△EFC.(11分)

,连接DF,并延长DF交AB的延长线于点E,连接CE.